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Abstract— This paper presents a novel algorithm for mon-
itoring marine environments utilizing a resource-constrained
robot. Collecting water quality data from large bodies of
water is paramount for monitoring the ecosystem’s health,
particularly for predicting harmful cyanobacteria blooms. The
large spatial dimensions of such bodies of water and the
slow varying of water quality parameters make exhaustive,
complete coverage impractical and unnecessary. This work
explores a new strategy for efficiently measuring water quality
quantities with an autonomous surface vehicle (ASV). The
method utilizes the medial axis of the water body producing
a guideline for the ASV trajectory that visits representative
areas of the environment. The proposed method ensures data
collection in the narrower parts of the lake, where researchers
have historically observed harmful blooms while also visiting
open water areas. It also presents an analysis of the Spatio-
temporal sensitivity of the target sensor. A comparison with
the traditional lawnmower algorithm demonstrates that the
conventional BCD-based complete coverage method cannot
sample the small coves of a lake. As such, we show that the
proposed method captures more diverse regions of the area
with a partial coverage technique. Offline analysis of several
lakes and reservoirs and results from field deployments at
Lake Murray, SC, USA, demonstrate the proposed method’s
effectiveness.

I. INTRODUCTION

This paper investigates a novel trajectory planning al-
gorithm of an Autonomous Surface Vehicles (ASV) for
monitoring Harmful Cyanobacteria Blooms (HCBs) in fresh
surface waters, such as lakes and reservoirs — see Fig. 1,
where our ASV [1] collects data at Lake Murray, SC, USA.
In order to establish a baseline for the conditions of a water
body, data needs to be collected, however, the size of the
environment together with the slow rate of change of these
measurements makes a grid-based dense sampling unrealistic
and unnecessary.

Recent research has demonstrated that ASVs have sig-
nificant potential for surveying, exploring, and monitoring
marine environments [2], [3]. Research is being conducted
into Harmful Algal Bloom (HABs) in an effort to better
predict and understand them, and there is evidence that global
warming is increasing their rate of occurrence [4]. However,
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Fig. 1: Autonomous Surface Vehicle collecting bathymetric and
water quality data at Lake Murray, SC, USA.

previous algal bloom studies note that human monitoring of
such HAB events [5] is an extremely time consuming and
resource intensive task.

HCBs occur in fresh waters such as lakes, while algal
blooms (HABs) occur in salt and brackish waters. They are
the result of many different organisms, such as toxic and
noxious phytoplankton, macroalgae and benthic algae, and
cyanobacteria. In freshwater environments, such as lakes,
blooms are mainly caused by benthic algae and cyanobac-
teria, thus often called Harmful Cyanobacteria Blooms
(HCBs). Since 2010 there have been more than 500 reports
in the USA of HABs/HCBs1.

Since the seventies [6], scientists have been trying to
monitor, understand and predict algal blooms, a topic that
has stayed an active area of research. Remote sensing from
satellite images was utilized to observe lakes, albeit in low
resolution. The environmental drivers that initiate, maintain,
and influence the growth and spread of HCBs are still
not fully understood, which impedes their predictability and
management. Traditional science relies on manual sampling
of the water in distinct locations. This process is labor
intensive, time consuming, often exposes scientists to unsafe
conditions (contact with toxic algae), and is limited both
spatially and temporarily. However, manual sampling/data-
collection is the standard approach and provides an excel-
lent starting point and a base of comparison. Within the
robotics community, research applicable to this task includes
algorithms for coverage of a known environment [7]–[9]
or adaptive sampling [2], [10], [11]. For water quality
monitoring, it is important to cover large surfaces of wa-
ter, however, dense patterns generate trajectories that are
prohibitively long. Historical data have shown that HCBs

1https://www.ewg.org/interactive-maps/algal_
blooms/map/



develop near the shore and not in the deeper parts of the lake.
Furthermore, the quantities of interest do not change rapidly
across the surface of the lake. Therefore, the traditional
grid sampling pattern (also termed boustrophedon, lawn-
mower, or seed-spreader algorithms) is prohibitively slow
and does not contribute additional information. In contrary,
sampling based approaches assume prior knowledge about
the environment, based on which they aim to maximize
information gain.

This paper presents a novel approach for systematic cov-
ering of an aquatic environment, based on utilizing the
skeleton [12] (also called medial axis [13] or Generalized
Voronoi Graph [14]) of the target area to guide the ASV’s
trajectory.The skeleton —that is, the set points in free
space that are equidistant to multiple distinct points on
the obstacle boundary— provides a well established one
dimensional retraction of a two dimensional shape [15] used
for shape segmentation and object recognition. Consequently,
the skeleton traverses through the entire shape and generates
a first order representation. In order to spread the coverage
trajectory as wide as possible, the medial axis (skeleton)
between the original skeleton and the boundaries of free
space is used. The resulting trajectory passes through free
space, ensuring that the areas closer to shore are visited more.

The main motivation of the proposed approach is the
observation that phenomena of interest more often than not
occur near shore and in particular start inside small coves
which are protected from strong winds and currents. In ad-
dition, from a navigation perspective, near-shore operations
are increasingly challenging in contrast to operations away
from the shores. In other words, in the middle of the lake,
there is minimal variation of the water quality values, and
a simple lawnmower pattern can be applied. Experimental
results from Lake Murray, SC, USA validate our approach,
while the algorithm has been used to extract large trajectories
of the major lakes in South Carolina to test the scalability
of the approach.

II. RELATED WORK

The area coverage path planning problem has been ex-
tensively studied in robotics [16], [17]. Depending on the
goal or constraints of the coverage operation, different vari-
ations have been presented such as coverage under limited
resources, complete coverage, information driven coverage
or sampling based coverage.

a) Complete Coverage: One of the widely used ap-
proaches of Complete Coverage is based on the boustrophe-
don area decomposition approach, which splits the area of
interest into obstacle-free cells and then moves the robot in
a lawnmower motion pattern to cover each cell [18]. Several
works use this type of motion as the method of choice in
solving the coverage problems as a main strategy [19] or
as a prior strategy to improve coverage quality [20]. Other
approaches were also used for decomposing areas, such as
Morse [21] or grid-based [22], [23] decomposition.

Polynomial time algorithms were proposed for solving
single robot coverage using a boustrophedon decomposition

based approach [24], [25]. In contrast to the original algo-
rithm, in these approaches, the problem is represented as a
Chinese postman problem (CPP), which ensures an efficient
coverage order of cells.

When considering the coverage problem for robots with
turning constraints, the presented methods that use the bous-
trophedon coverage pattern may not be the most efficient
— that is, they will either spend excess time on covering
areas out of the region of interest or fail to perform com-
plete coverage on turns because of the rotation constraints.
The Dubins vehicle is a common robot model in coverage
problems, and Savla et al. [26] consider a control-theoretic
solution. Lewis et al. [9] proposed an algorithm for a single
robot with Dubins constraints utilizing a TSP formulation.

The problem of reducing traversal time by the motion con-
straints was also addressed by Huang [27] and Yao [28]. In
these works, motion constraints are used in the environmental
decomposition with the objective of reducing the amount of
rotation required by the robot. Similarly, to minimize the
number of turns with multiple robots, Vandermeulen et al.
introduced a rank partitioning heuristic that used a multiple
travelling salesman (m-TSP) formulation [29].

b) Information-driven Coverage: In many applications,
performing complete coverage is infeasible. On the other
hand, when prior information is available about the area, and
the aim is to maximize the utilization of that prior knowl-
edge, then information driven or sampling based methods are
applied [30], [31]. Using this approach, Manjanna et al. [32]
were able to create a map of a coral reef area with half the
distance travelled and power used than a lawnmower-style
complete coverage algorithm would have required. Roznere
et al. [3] presented preliminary work on utilizing an ASV for
HCB monitoring utilizing pre-programmed and information
driven trajectories.

c) Skeleton, Medial Axis, center of maximal disks,
Generalized Voronoi Graphs: all these terms define the
same concept [33], [34] with small variations: the locus of
points equidistant from some boundary. The linear skeleton
approach [12] operates on a polygon by retracting each
edge inwards uniformly, also termed the brushfire transform,
until the retracted edges meet. The center of maximal disks
describes the same concept, where a maximal disk is a circle
inscribed in a shape which is not properly contained in
another inscribed circle. The set of all the maximal disk
centers defines the same representation. Finally, the most
common term, medial axis [13], is the set of all points inside
the area of interest with more than one closest point to the
boundary of the area.

Generalized Voronoi Graphs (GVGs) were introduced by
Choset and Burdick [14] and have been used to guide
exploration of indoor spaces, navigating without exact local-
ization [35], and reducing localization error [36]–[38]. GVGs
focus on the control laws to guide a robot to stay equidistant
from two or more obstacles while navigating in open space.



(a) (b) (c)

(d) (e) (f)

Fig. 2: The proposed approach in images, Lake Murray, SC, USA: (a) The target environment (Satellite). (b) The binary map identifying
obstacles and free space. (c) The free space map, obstacles dilated for safety. (d) The skeleton of free space (in red). (e) The skeleton (in
red) and the second skeleton between the skeleton and the obstacles (in blue). Both skeletons, trimmed. (f) The generated waypoints for
the coverage path together with the GPS points of the executed trajectory.

III. PROPOSED APPROACH

The first step of the approach is to select the area of
interest on an online map; see, for example Fig. 2(a) for
a satellite image from Google Maps. Utilizing the default
view and removing the labels results in a clear distinction
of the water body from the landmass. An image is captured
with the top left and bottom right coordinates in longitude
and latitude recorded; the image then is transformed into
black and white (white for free space – water, and black
for obstacles); see Fig. 2(b). Each pixel in this image has a
fixed size in meters as extracted from the recorded latitude-
longitude coordinates.

In order to produce safe trajectories, the environment is
dilated and eroded using a safety distance (in our case, ten
meters) which is translated to a fixed number of pixels; see
Fig. 2(c) for the safe environment of Fig. 2(b). Inspection
of the satellite map often reveals man-made obstacles that
do not appear in the default map. Edits to the black and
white obstacle map ensure that such objects are recorded.
It is worth noting that the proposed approach is designed
for operations in a known environment, as such, expert
knowledge, sometimes from on site observations, should be
recorded in the map representing the environment.

The morphology of free space is captured by extracting
the skeleton of free space; see Fig. 2(d). Several different
variants of the skeleton algorithm exist, after experimenta-
tion, the Lee et al. [39] skeleton algorithm was selected as it
resulted in a smaller number of extraneous edges. The next
step is to trim the resulting skeleton using the following
criteria: edges that barely entered a cove were removed

together with smaller edges. Finally, each terminating edge
was trimmed a safe distance from the obstacles.

The proposed algorithm utilizes the trimmed skeleton from
the previous step in order to produce a cyclic path traversing
the perimeter of the skeleton. The key idea is to construct
the medial axis (skeleton) between the original skeleton and
the dilated environment. The medial axis constructed by two
branches of the original skeleton results in dead ends of edges
finishing in the middle of the environment, and as such are
avoided. Figure 2(e) presents the trimmed skeleton (in red)
and the medial axis (in blue) between the trimmed skeleton
and the environment. As can be seen, the skeleton guides
the path inside the coves while the medial axis generates a
path that circumscribes the skeleton, terminating next to the
starting point. More formally, for a given point p and set T ,
define the closest distance from point p to a set of points T
as DT (p) = minpt∈T (d(p, pt)), in which d is the Euclidean
distance, i.e. the L2 norm. The medial axis M then is defined
as the set of all points in free space Pfree that are equidistant
to the obstacle space O and the original skeleton S, so that:
M = {p ∈ Pfree | DO(p) = DS(p)}.

The produced path traverses through the points that are
equidistant to the skeleton and the obstacle boundaries. Every
cove (concave area of free space) traverse is divided into
three areas from the obstacle to the path, between the two
paths (where the original skeleton is located) and then from
the other path to the obstacle. Every point of free space is
positioned at most at a distance dmax from the path, which
is the distance from the path to the nearest obstacle. While
traversing the skeleton will trace the same area, the maximum



distance to the path is twice the distance from the proposed
approach, and the ASV traverses the same path twice.

Figure 2(f) presents the planned GPS waypoints plotted on
top of the satellite image (red) and the resulting GPS trace
from the actual deployment in that environment (yellow).
There are small deviations where waves pushed the ASV
off-course, and it corrected on the way to the next waypoint.
The starting and ending points were planned to start outside
a no-wake zone with heavy boat traffic, and for safety, the
start and end of the experiment were under manual operation.

The resulting path is heavily biased towards the boundaries
of the environment as expected. An obvious comparison
will be to a shore following algorithm. However, such an
approach has two drawbacks: a fixed distance to shore fails
to accommodate for the varying width of the coves, as such
sampling inside the coves would not be uniform. In addition,
in more open areas, the proposed algorithm uniformly divides
the free space to travel equidistant from the obstacles and the
original skeleton.

IV. EXPERIMENTAL RESULTS

A. Experimental Platform

The vehicle utilized is the Jetyak [1], an ASV developed
at the University of South Carolina; see Fig. 1 for the ASV
operating at Lake Murray, SC, USA. The ASV is based
on a modified Mokai Es-Kape2 boat. The stock vessel uses
an internal combustion engine and reaches speeds up to
22.5 km/h, with a deployment time of over eight hours.
The ES-Kape’s factory pulse width modulated controlled
servo system allows seamless integration with a Pixhawk3

flight control system and on-board control through a com-
panion Intel UP computer serving to host Robot Operat-
ing System (ROS) [40]4. The Autonomous Surface Vehicle
(ASV) [1] has been equipped with a YSI EXO2 multipa-
rameter sonde [41] to collect water quality samples near
the surface (at 0.5m depth) utilizing the proposed sampling
trajectory. In addition, bathymetry data are collected, and the
water quality data are augmented with the depth information
along the trajectory of collection.

B. A spatio-temporal analysis of the target sensors

There are two factors influencing the proposed coverage
pattern: the spatial variation of the measured quantity and
the temporal sensitivity of the sensor. From the EXO2 sonde
manual [42] the factory reported response time values T635

for the sensors attached, ranging between one and five
seconds. It is worth noting that data are collected every
two seconds (0.5Hz), which is the fastest rate of the Sonde.
Dissolved oxygen has the slowest response time with less
than five seconds and then pH with less than three seconds.
However, as the variables of interest change slowly, we were
able to maintain speeds of 6.4Km/h with no adverse effects.

2http://www.mokai.com/mokai-es-kape/
3https://docs.px4.io/en/flight_controller/mro_

pixhawk.html
4http://wiki.ros.org/
5T63 is the time it takes the sensor to reach 63% of the actual value.

C. Target Environment

The proposed system is expected to be deployed in differ-
ent water bodies wherever harmful blooms occur. In South
Carolina, we have selected two lakes: Lake Murray and Lake
Wateree. Lake Murray spans more than 200 km2, and has a
shore length in excess of 700 km, with a length of 66 km
and with a maximum depth of 57m. Lake Wateree covers
an area of 49 km2, with a shore length of 291 km and a
maximum depth of 19.5m. Both are man-made impound-
ment lakes used for municipal water supply and recreation.
They are subject to extensive nutrient loading and experience
reoccurring poorly resolved HCBs that are dominated by
the toxin producing cyanobacteria Microcystis aeruginosa in
Lake Murray and the benthic cyanobacterium Lyngbya wollei
in Lake Wateree [43], [44].

D. Coverage comparison with complete coverage

In this comparison, the length of the trajectory from
the proposed approach was used as a guideline to choose
the footprint of the boustrophedon decomposition based
(BCD) algorithm in order to get approximate similar length
trajectories. Figure 3(a) presents a BCD path with a relative
small footprint. In order to ensure a safe trajectory the target
environment is heavily dilated. Figure 3(b) presents the BCD
path with a large footprint. Even with a large footprint, the
BCD algorithm resulted in a longer trajectory. The two paths,
as presented in Fig. 3 (b,c), were utilized to extract statistics
on the quality of coverage.

The two paths were used for comparing the proximity
of all free space to the coverage path. Figure 4 shows a
heat map where blue indicates close proximity traversing
through green, yellow, and finally red for the maximum
distance. It is worth noting that for the areas close to
shore, especially inside all the coves of the environment,
the proposed algorithm results in close proximity coverage.
In addition, the proposed algorithm resulted in shortened
maximum distances compared to the BCD. Quantitative,
Table I presents a comparison of the mean and max distance
in meters of the coverage proximity of the two approaches.

The preliminary results show a clear advantage over
the boustrophedon decomposition based (BCD) method
(Fig. 3(b)) when monitoring a surface with many inlets.
When the sensor footprint is large, the BCD-based approach
sometimes fails to generate non-overlapping and evenly
spaced out passes. Also, since the BCD algorithm has to
choose one single coverage direction, it lacks the same ability
as the skeleton-based approach to have coverage trajectories
spread out in different directions throughout the area of
interest, thus providing better access to the inlets of the

TABLE I: Comparison of the two motion strategies in terms of
proximity of coverage. All values are in meters.

Strategy Dist. Mean max
Boustrophedon [8] 23,174 75.88 603.09
Skeleton based 17,783 79.12 321.36
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Fig. 3: (a) Boustrophedon area decomposition based efficient single robot coverage with smaller sensor footprint planned on a heavily
dilated obstacle map; (b) 4× larger footprint resulting in a trajectory comparable to the proposed skeleton based algorithm; (c) the proposed
algorithm heavily favoring near-shore trajectories.

(a) (b)

Fig. 4: Heat-map showing the proximity of each point in open space
from the ASV’s trajectory for (a) Boustrophedon path, (b) Skeleton-
based contour path.

lake. Furthermore, even with a longer trajectory, the BCD
average distance of points in free space to the coverage
path was approximately the same (75m-79m); however,
the maximum distance of BCD was almost double (603m)
compared to the max distance resulted from the proposed
algorithm (321m).

E. Large scale experiments in planning

Different lakes and segments of lakes have been selected,
and the proposed algorithm was run on them to verify the
scalability of the proposed method. Figure 5(a) presents a
trajectory for Lake Murray covering an area of more than
200 km2, and the resulting trajectory is 548Km. Figure 5(b)
presents a trajectory for a large segment of Lake Murray, the
resulting trajectory is 308Km. The whole area of Lake Wa-
teree is used and Fig. 5(c) shows the trajectory with a length
of 144Km. The above experiments revealed a challenge in
the presence of islands. The resulting trajectory consisted
of multiple components (going around each island). One
solution to this problem is the rearranging of the waypoints
so the trajectory bridges out to the separate component and
then continues. Future work will address this issue.

F. Field tests at Lake Murray

Several deployments have verified the slow changing val-
ues of water quality data, especially in the deeper parts of the
lake, away from the shores. Fig. 2(f) presents the GPS track
of a deployment, where the ASV traveled through a 17Km
trajectory, collecting water quality and bathymetric data.
Figure 6 presents the water depth along the trajectory and

the depth data have been used to evaluate the variance of the
water quality data. As can be seen in Fig. 7 pH, temperature,
and Dissolved Oxygen (DO) are fairly constant in deeper
waters (depths larger than 25m) while the shallower the
water the greater the collected values variance.

V. CONCLUSIONS
In this work, we presented a new algorithm that uses

the skeleton of the free space to guide water quality data
collection over a confined body of water. Utilizing the
skeleton of the free space, the ASV is guided in a circular
path visiting all the distinctive areas of the environment
(coves and islands) in preference over large open areas. The
proposed algorithm has been field tested at Lake Murray in
trajectories of over 15Km lengths, collecting water quality
data. Moreover, compared with a traditional Boustrophedon-
based algorithm, the proposed approach reduced the maxi-
mum distance of the free space to our trajectory almost by
half.

The next task will be to address the issue of disconnected
components of produced trajectory in the presence of islands.
A trivial solution is to block the passage between islands;
however, other alternatives will be investigated [45]. Future
work will incorporate obstacle avoidance, particularly dy-
namic obstacles (boats and jet skis), in combination with
mission recovery to enable evasive maneuvering and the
continuation of the desired trajectory.

During the summer, when there are more frequent HCB
events, the proposed algorithm will be deployed regularly at
Lake Murray and Lake Wateree. The collected data, water
sampling, and stationary data collection are expected to
provide new insights into the development of HCBs.
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