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Abstract— In this paper, we present a system for measuring
water quality, with a focus on detecting and predicting Harmful
Cyanobacterial Blooms (HCBs). The proposed approach in-
cludes stationary multi-sensor stations, Autonomous Surface
Vehicles (ASVs) collecting water quality data, and manual
deployments of vertical water sampling together with vertical
water quality sensor data collection, in order to monitor the
health of the lake and the progress of different types of
algal blooms. Traditional water monitoring is performed by
manual sampling, which is limited both in the spatial and the
temporal domain. The proposed method will expand the range
of measurements while reducing the cost. Human sampling is
still included in order to provide a base of comparison and
ground truth for the automated measurements. In addition, the
collected data, over multiple years, will be analyzed to infer
correlations between the different measured parameters and
the presence of blooms. A detailed description of the proposed
system is presented together with data collected during our first
sampling season.

I. INTRODUCTION

This paper proposes a multi-modal monitoring system for
monitoring Harmful Algal Blooms (HABs) in surface fresh
waters, such as lakes and reservoirs – see Fig. 1. Habs occur
in fresh, salt, and brackish waters, that is, in lakes, marine,
and estuarine environments. They are the result of many dif-
ferent organisms, such as toxic and noxious phytoplankton,
macroalgae and benthic algae, and cyanobacteria. In fresh
water environments, such as lakes, are mainly caused by
benthic algae and cyanobacteria, thus often called Harmfull
Cyanobacteria Blooms (HCBs). Since 2010 there have been
more than 500 reports in USA of harmful blooms1.

Since the seventies [1] scientists are trying to monitor,
understand and predict algal blooms, a topic that has stayed
an active area of research. Remote sensing [2] from satellite
images was utilized to observed lakes, albeit in low resolu-
tion. The environmental drivers that initiate, maintain, and
influence the growth and spread of HCBs are still not fully
understood, which impedes their predictability and manage-
ment. Traditional science relies on manual sampling of the
water in distinct locations. This process is labor intensive,
time consuming, often exposes scientists to unsafe conditions
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Fig. 1: Autonomous Surface Vehicle collecting bathymetric and
water quality data around a permanent sensing station.

(contact with toxic algae), and is limited both spatially and
temporarily. However, manual sampling/data-collection is the
standard approach and provides an excellent starting point
and a base of comparison. Within the robotics community,
work that could be applicable for this task includes al-
gorithms for coverage of a known environment [3]–[5] or
adaptive sampling [6], [7]. Such approaches are still largely
underused in practice; their focus is on minimizing the task
cost (e.g., traveled distance) rather than evaluating the system
as a whole for high-quality data collection.

In this paper, as part of a larger effort in the US East
Coast [8], [9], the proposed approach utilizes the traditional
data collection methods, augmented with autonomous op-
erations. In particular, we have identified two man-made
impoundment lakes of significant size in South Carolina that
exhibit algal growth. In both lakes, municipal and state actors
have been collecting water quality data for years. We built
upon this work by introducing a complete water sampling
system. Central in the proposed approach is an Autonomous
Surface Vehicle (ASV) [10] equipped with a YSI EXO2
multi-sensor sonde for collecting water quality data near the
lake surface over large areas. In addition to the ASV opera-
tions, two buoys are placed in each lake, collecting dissolved
oxygen and temperature data at different depths at high
frequency (every 10 minutes) all year round. Finally, during
the growth session (April to October) manual water sampling
with a Niskin bottle together with vertical deployments of a
second multi-sensor sonde are performed in distinct locations
every two weeks. We evaluate a boustrophedon and a spiral
coverage patterns. The main contribution of this paper is in
providing guidelines on reliable and efficient collection of
data that can be used then for training predictive models and
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Fig. 2: (a) Lake Murray. (b) Lake Wateree. South Carolina, USA. From: https://www.google.com/maps/

informing stakeholders of the lake health. Lessons learned
from one-year data collection will be provided for such a
long-term deployment.

The rest of the paper presents the details of the proposed
approach, the rationale behind the design decisions, and
lessons learned from the first year of deployments.

II. RELATED WORK

Work in the limnology literature that studies predictive
models for the occurrence of HCBs [11]–[15] relies on
datasets from sources that are typically considered indepen-
dently. For example, manual sampling within each lake at
weekly or monthly intervals [16], [17]; buoys deployed in
fixed locations that can measure water parameters at minute
or hour intervals [18]; and satellite imaging [19]–[21]. With
such data collection approaches, the spatial coverage or the
resolution of the data is limited, stifling the advances in the
understanding of HCBs.

Robotic systems can allow scientists to collect datasets
with higher spatial coverage and resolution. One main family
of data collection methods is based on coverage [22], [23].
The traditional approach is to employ a boustrophedon path
to fully cover the free space of the region with a sensor.
A number of methods have been proposed to optimize the
coverage cost for a single robot (e.g., [5], [24]–[27]) or
multiple robots (e.g., [3], [4], [28]–[32]). If some prior infor-
mation is available, selective coverage methods [33]–[36] are
employed. This body of research focused on the same type of
sensor capabilities. A second type of approaches is based on
adaptive sampling: take measurements only in “interesting”
locations – e.g., where there are high hotspots – with the
model built online. Valada et al. [37] developed a low-
cost multi-robot autonomous platform for monitoring water
quality, by discretizing the area and selecting locations based
on maximum uncertainty. Girdhar et al. [38] demonstrated
a heterogeneous multi-robot system consisting of a UAV, an
ASV, and an AUV to cover an area of interest indicated
by a human expert. Low-cost assets are sometimes used
to collect lower resolution data and inform more expensive
vehicles for higher-resolution data [6], [7], [39]. In general,
the focus of this set of work from the robotics community

is on efficiency. The long-term aspect and the reliability of
the data from different sensors and their integration is still
an open problem.

To enhance the data available for predictive models and
interception efforts of HCBs (e.g., from the U.S. Army
Engineer Research and Development Center (ERDC) [40]),
we present a holistic system composed of stationary sensors
and ASVs and the long-term data collection performed
during our first year.

[41]
[42], [43]

III. THE PROPOSED SYSTEM

A. Overview

The proposed approach includes several different sensors
deployed in a variety of methods in order to collect water
quality measurements. Four different buoys have been de-
ployed, two on each lake, covering a shallow and a deep
station near water intakes for two different water treatment
plants. These four station operate year-round collecting dis-
solved oxygen and temperature data at different depths, at
high temporal frequency, and they provide a baseline on
the conditions of each lake. Autonomous Surface Vehicles
(ASVs) [10] have been equipped with a YSI EXO2 multi-
parameter sonde [44] to collect water quality samples near
the surface (at 0.5m depth) utilizing different (horizontal)
sampling patterns. In addition, bathymetry data are collected
and the water quality data are augmented with the depth
information along the trajectory of collection. In addition,
a second multiparameter sonde is manually deployed for
collecting vertical profiles at select locations together with
water samples at distinct depths for laboratory analysis, at a
low temporal frequency (every two weeks). The resulting
system obtains data in three dimensions at distinct time
instances and continues samples in select locations.

B. Target Environment

The proposed system is expected to be deployed in
different water bodies wherever harmful blooms occur. In
South Carolina, we have selected two lakes: Lake Murray
(Fig. 2(a)) and Lake Wateree (Fig. 2(b)). Lake Murray spans
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Fig. 3: (a) The deep water station at Lake Murray. (b) The station setup ensures stability, even during extreme weather events.

more than 200 km2, has a shore length in excess of 700 km,
with a length of 66 km and with a maximum depth of 57m.
Lake Wateree covers an area of 49 km2, with a shore length
of 291 km, and a maximum depth of 19.5m. Both are man-
made impoundment lakes, used for municipal water supply
and recreation. They are subject to extensive nutrient loading
and experience reoccurring poorly resolved HCBs that are
dominated by the toxin producing cyanobacteria Microcystis
aeruginosa in Lake Murray and the benthic cyanobacterium
Lyngbya wollei in Lake Wateree [45], [46].

C. High Temporal Frequency Vertical Sensing

Two monitoring stations collecting vertical water-column
measurements of dissolved oxygen and temperature are
placed in both lake Murray and lake Wateree. For both lakes,
the water enters from one side and exits on the opposite
side. These stations obtain vertical profiles at one shallow
and one deep place in each lake. The shallow stations are
located close to the drinking water intake in each lakes. In
addition, the deep stations are placed near the outflow of the
lake. In both lakes the placement of the four stations can be
seen Fig. 2 in the lower right part.

The stations utilize the miniDOT [47] sensor in conjunc-
tion with an anti-fouling wiper [48] to measure dissolved
oxygen and temperature. The accuracy of the dissolved
oxygen measured optically, is ±10 µmol/L, while the ac-
curacy of the temperature measurements is ±0.1 °C. The
sampling interval is set to ten minutes and the data are stored
internally on the sensors. It is worth noting that, due to
the water condition and the long duration of deployment,
the use of an anti-fouling wiper is necessary to remove
growth of biological organisms from the sensor. Additional
miniature one-channel temperature data loggers (HOBO 64K
Pendant sensors from Onset) [49] are used to record the water
temperature with the sampling interval set to ten minutes and
the data stored internally. The accuracy of the temperature
sensor is ±0.53 °C. The data are collected by manually
retrieving the line with the sensors and then individually
downloading the data to a computer. After removing the
measurements that occurred while the sensors were outside

the water, the data are made available online for the scientific
community and the general public.

The proposed multi-sensor station setup is designed to
maintain a secure placement even in the event of extreme
weather. South Carolina is often visited by hurricanes, while
the target lakes are further inland, severe rainfall and strong
winds are common. The YSI EMM25 buoy is used to secure
the string of sensors on one end, at the other end a 4.53 kg
mushroom anchor keeps the line from drifting. The YSI buoy
is connected to a large orange buoy that provides a stable
platform; see Fig. 3(a) for a picture of the three surface
buoys. The large orange buoy is connected to two Danforth
fluke anchors at the bottom which they grip the bottom and
are extremely difficult to move. One of the Danforth anchor
is connected via a chain to a second 4.53 kg mushroom
anchor which is connected to the smaller orange buoy at
the surface. Please refer to Fig. 3(b) for a diagram of the
buoy/anchor setup. The smaller orange buoy can be used
to raise the mushroom anchor, pulling the connected (first)
Danforth anchor, which will pull the second Danforth anchor
for relocating the station.

The sensor placements in each station is designed to
measure dissolved oxygen near the surface and near the
bottom: 1m from the water surface and 1m off the bottom;
and in equal distance in between. More specifically, in lake
Murray, the deep station is at a depth of 30m and is equipped
with four miniDOT and 11 HOBO sensors; the shallow
station, at 6m, has two miniDOT and two HOBO sensors.
Lake Wateree: the deep stations is at a depth of 17m with
three miniDOT and eight HOBO sensors, while the shallow
station at 6m has the same configuration as the shallow
station at lake Murray.

D. Low Temporal Frequency Horizontal Sensing

The proposed approach utilizes a YSI EXO2 multipa-
rameter sonde [44] equipped with a suite of sensors mea-
suring depth, temperature, conductivity, dissolved oxygen,
pH, turbidity, and total algae/phycocyanin. The sonde is
mounted 0.75m below the waterline on an Autonomous Sur-
face Vehicle (ASV) [10] collecting data every two seconds.
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Fig. 4: GPS coordinates of deployed patterns recorded by PixHawk
on 151m×151m area with 10m sensor footprint ASV. Green
landmark point is the location of deep station. (a) Spiral, and (b)
Boustrophedon, c) 1.076m Single line transect.

The ASV is controlled by a low-level controller, the 3DR
Pixhawk running a realtime operating system, NuttX OS,
in combination with the ArduPilot s/w suite. The Pixhawk
utilizes internal/external compass and an external GPS. After
installing the GPS, the compass (both internal and external)
are calibrated and the coordinate transformation between
the GPS and the Pixhawk is calculated. The PixHawk is
set to Rover configuration thus the steering and throttle
servos of the ASV are directly controlled by modifying the
Pulse Width Modulation (PWM) values in the PixHawk to
match the vessels operating specifications. The vehicle is
also equipped with a bathymetric sonar: either a single ping
sonar (NMEA 0183 CruzPro AT120-P) or a side scan sonar
(Humminbird Helix 7). Processed data from the side scan
sonar are presented in Section IV. The autonomous vehicle
collects time-stamped data, ROS bagfiles [50], correlating
the GPS locale, the bathymetry, and the water quality data.

Different trajectory generation strategies are employed in
order to guide the ASV. Of particular interest are the regions
around the buoy deployments, across each lake, and the data
variance near shore and in the middle of the lake. Transects
at different locales produced water quality data correlated
with the bathymetric morphology. In addition, two different
strategies: a spiral pattern and a boustrophedon pattern have
been utilized to investigate the variation in the chlorophyll
values around the testing stations; see Fig. 4 for two sample
trajectories along with a sample transect. The patterns
have been deployed several times on 100m×100m and
151m×151m areas around the deep station with an ASV’s
sensor footprint of 10m. A comparison of the distance
traveled and area covered in the two patterns is presented
in Table I. The experiments show that there is only slight
difference between boustrophedon and spiral patterns in
terms of distance traveled, area covered and time. This can

Spiral Bsd LSpiral LBsd Line
Time 6m 29s 7m 46s 15m 58s 17m 55s 8m 29s
Len. 745m 869m 1915m 2173m 1076m
Area 7451m2 8689m2 19150m2 21730m2 10760m2

TABLE I: Comparison of the coverage metrics for different ASV
patterns. Spiral and Bsd refer to spiral and boustrophedon patterns
covering an 100m×100m area, while LSpiral and LBsd refer to
the same patterns covering an 151m×151m area respectively.

be explained by the fact that in a curved trajectory what
is gained in the wider end is lost from the narrower end.
For example, in the coverage of a part of an annulus, the
inner circle is shorter by the same amount that the outer
circle is longer, as compared to the middle. It is worth noting
that, when deploying to cover a small area around a point
of interest, the spiral pattern is more applicable. When a
rectangular patch needs to be covered, given the ASV turning
radius constrains, for smaller footprints, the Dubin’s vehicle
coverage method is required [5].

E. Low Temporal Frequency Vertical Sensing

As part of our sampling program, we collect vertical
profiles with a second YSI EXO2 sonde, with the same
sensors as the one mounted on the ASV. In the first phase,
deployments have been conducted at the shallow and deep
stations at both lakes. The data collected provide a more nui-
sance image of the state presented by the permanent sensing
stations discussed above. Furthermore, correlations between
the chlorophyll values and temperature and dissolved oxygen
are considered; it is worth noting the permanent stations only
record temperature and dissolved oxygen.

F. Low Temporal Frequency Vertical Sampling

We collect water samples at 3–5m depth intervals for
nutrient analysis at each station location using a Niskin
bottle. Nutrient samples (nitrate, nitrite, ammonium, phos-
phate as well as dissolved organic nitrogen and phosphorus)
are analyzed in the Bourbonnais Lab at UofSC using a
Seal Analytical AQ300 nutrient autoanalyzer. Samples for
chlorophyll a and phytoplankton community composition
analysis by high performance liquid chromatography are also
collected at the same depths (collaboration with Dr. James
Pinckney, University of South Carolina).

IV. EXPERIMENTS

The above described multi-modal data collection provides
a diverse set of data covering different areas of the lakes
over extended periods describing different facets of the water
conditions. Starting with traditional marine science manual
operations, Fig. 5 shows depth profiles collected within
approximately a two-week interval in September/October
2020 at the deep and shallow stations in lake Murray.
Chlorophyll maximum was around two-meter depth at all
stations. pH decreased toward deeper waters due to net
carbon dioxide production coming from the respiration of
organic material. Oxygen depleted bottom waters were ob-
served at the deep station due to oxygen consumption during
respiration. We observed weaker stratification and deepening
of the oxic/anoxic interface over time, which is expected
as temperature and densities of the different water masses
become more similar as fall progresses.

From the water samples collected in both stations in
lake Murray the laboratory analysis showed that, nitrate,
nitrite and phosphate were completely depleted (i.e., below
method detection limits) at all depths at both the shallow and
deep stations (data not shown). Ammonium was depleted



Fig. 5: Vertical profiles of chlorophyll, dissolved oxygen, pH, and temperature in Lake Murray collected with the YSI EXO2 sonde.

in surface waters and at the shallow station but gradually
increased to up to about 0.1mg/L in hypoxic bottom waters
at the deep station (Table II).

Sampling date Station Depth (m)

NH+
4

concentration
(mg/L)

09/15/2020 Shallow 1 0
09/15/2020 Shallow 4 0
09/22/2020 Deep 4 0
09/22/2020 Deep 25 0.0736
10/8/2020 Shallow 1 0
10/8/2020 Shallow 4 0
10/8/2020 Deep 5 0
10/8/2020 Deep 12 0.0196
10/8/2020 Deep 17 0.0248
10/8/2020 Deep 25 0.1138

TABLE II: Laboratory analysis results for NH+
4 concentration,

from water samples collected in lake Murray.
The results from the two permanent stations provide a

profile of the temperature and dissolved oxygen at different
depth. Figure 6 shows that the lake was stratified until late
October and then completely mixed during fall and winter.
This is clear from the top row of Fig. 6 where the temperature
from the miniDOT and HOBO sensors is stratified at the
beginning to converge to a slowly lowering temperature
over time as the weather gets colder. The dissolved oxygen,
presented in Fig. 6(c), is between 80%-100% near the top of
the lake and a bit lower at 9m, however it is quite depleted
at 20m and the environment is anoxic near the bottom at
30m. As the waters mix during fall, all the values converge.
It is worth noting, the miniDOT data is consistent with the
YSI vertical profiles from Fig. 5.

During deployment of the ASV, the YSI EXO2 data are
correlated with the GPS location at the time of collection and
the water depth at that location. During deployments two area
coverage patterns were used (see Fig. 4) the data from the
side scan sonar were processed to provide a bathymetric map.
Figure 7 presents the two maps around the deep station. As

can be seen, the bottom varies from 22m up to 36m inside
the 151m×151m area.

V. LESSONS LEARNED

Over the past year we have deployed four multi-sensor
stations, equipped an ASV with a sonde, and collected
data and sample both autonomously and manually. The data
collected have demonstrated that the horizontal variation is
limited, thus an automated system for deploying the sonde at
different depths will be critical. Furthermore, the manual data
acquisition from the four stations introduces a lag. Producing
a wireless data collection setup will be extremely convenient,
however, it is prohibitively expensive. In addition, one of the
challenges faced is the disappearance of some of the sensor
stations hardware. Deploying, unattended over a long time
(months), buoys at a popular lake has resulted in some of the
buoys to disappear. Future work will consider better theft-
proof attachment methods.

VI. CONCLUSION

A large scale sensing and sampling operation is proposed
in this paper. Traditional marine science methodology is
augmented with autonomous sensing approaches in order to
collect large volumes of data extending both temporally and
spatially. Proper data acquisition, labeling, and management
are critical in order to infer correlations between different
quantities measured enabling the prediction of harmful algal
blooms.

Future work will involve resource constraint water body
coverage [42][43] and multiple ASVs operating simultane-
ously, either following different strategies or coordinating
in order to cover much larger areas [4]. Due to the large
surface of the target lakes, scaling up to multiple ASVs will
be necessary when a complete survey of the lake is required.
Otherwise, heterogeneous teams of ASVs can be deployed
to identify areas of increased algal activities, where a second
ASV or a human operator will collect samples [6].
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Fig. 6: Top row: Lake Murray Deep station. (a) Temperature measurements from 11 Onset HOBO sensors; (b) Temperature measurements
from 4 miniDOT sensors; (c) Dissolved Oxygen Saturation Percentage from 4 miniDOT sensors. Bottom row: Lake Murray Shallow
station. (d) Temperature measurements from 2 Onset HOBO sensors; (e) Temperature measurements from 2 miniDOT sensors; (f) Dissolved
Oxygen Saturation Percentage from 2 miniDOT sensors.
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Fig. 7: Bathymetric map, lake Murray (a) Boustrophedon pattern.
(b) Spiral Pattern.

Aerial observations will provide additional information
utilizing a hyperspectral camera. Extending the marsupial
system presented by Kalaitzakis et al. [51], where an Un-
manned Aerial Vehicle (UAV) takes off and lands on an ASV,
by using a UAV capable of landing on water; see Fig. 8, will
generate a robust setup even in the case of a water landing.
In particular, hyperspectral imaging can be used to detect
algal blooms near the surface [52], [53], utilizing the water
quality data collected by the ASV, when a bloom is detected
the UAV will take off, and map the extent of the bloom by
flying around the ASV.

Fig. 8: The HexH2O hexacopter landing on water.
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